
WHITE PAPER

SPEED UP YOUR MACHINE
LEARNING WORKFLOWS WITH
GPU ACCELERATION ON THE
ENTERPRISE DATA CLOUD
By William Benton, Principal Product Architect, NVIDIA and
Jacob Bengtson, Sr. Technical Product Marketing Manager, Cloudera

INTRODUCING
AN END-TO-END
BLUEPRINT FOR
CHURN PREDICTION
AND MODELING

WHITE PAPER

Table of Contents

Introduction	 3

Data Science Workflows and the Customer Churn Problem	 4

Machine Learning Systems	 7

Overall Application Architecture	 8

Make an Impact on Your Business with ML That Scales	 12

3 An End-to-End Blueprint for Churn Prediction and Modeling

WHITE PAPER

Introduction
If you want to learn how to build a predictive model to solve a particular kind of business problem,
you’ll likely have no trouble finding a tutorial showing you how to extract features and train
a model. This is a pleasant side effect of the popularity and importance of data science and
machine learning across industries. However, solving business problems with machine learning
isn’t just about training models or even about finding the best features; if you want a starting
point for solving an entire problem from end to end, or if you want a realistic production workflow
to test your system architecture or hardware performance, these tutorials leave many of the hard
parts as an exercise for the reader.
In this document, we’re going to introduce a complete solution for predicting customer churn
— that is, answering the question, “Given what we know about this customer, is she likely to not
renew her contract?” We’ll also show the benefits of running this workflow on the Cloudera Data
Platform and accelerating each stage of this workflow with NVIDIA GPUs. If you’re interested in
learning more, you’ll be able to register for a full eBook that will provide a deep dive on how to
make the most out of this amazing combination, including analytic processing and federation of
structured data, integrating enterprise data engineering pipelines with machine learning, and
accelerated inference.
We’re going to start by level-setting: introducing a typical end-to-end machine learning
workflow, describing some of the challenges of production machine learning systems, and
explaining some of the specific concerns in understanding customer churn. We’ll then introduce
the overall architecture for our churn prediction solution.

WHITE PAPER

4 An End-to-End Blueprint for Churn Prediction and Modeling

Data Science Workflows and the Customer
Churn Problem
If we were talking about data science ten years ago, we’d have been referring to a broad
discipline that combined domain expertise with elements of analytics, applied statistics,
machine learning, computer science, and software engineering. A data scientist might have
had to wear many hats: identifying business objectives; cleaning data; processing big data at
scale; identifying features; encoding features; selecting and training models; building
applications, reports, or dashboards that incorporate those models; and even managing
infrastructure! Today, a typical data scientist is more specialized and only focuses on parts of
the classic data science workflow: characterizing data, finding patterns, and training models.
The other parts of the classic data science workflow are still important, but the practitioners
who are responsible for them may have a range of titles other than “data scientist,” such as
data engineer, application developer, machine learning engineer, or MLOps engineer.

This shift of responsibilities comes as data platforms like Cloudera Data Platform (CDP) evolve
to offer new capabilities and integrations. CDP provides tools to address the entire machine
learning lifecycle, with seamless connections to data sources across your infrastructure.

These changes create opportunities for new workflows. We’ll introduce such a workflow now
(borrowing concrete terminology from this paper) in the context of the churn prediction
problem.

Figure 1. A typical data science workflow, showing the human processes from discovery through production, and the team members and roles involved in each stage.

Codifying our Problem and Defining Metrics
The first step is formalizing the problem we’re trying to solve and defining metrics of success.
On a long enough timeline, every customer will fail to renew their subscription, but producing a
model that asserts “yes, eventually” for any customer isn’t useful. Similarly, we might be able to
predict quite accurately that a customer who has begun the process to cancel her account is
quite likely to churn in the near future, but such a prediction is also trivial. Ideally, we’d want a
model that identifies signals in a customer’s profile that indicate that the customer may churn
in the near but not immediate future and is thus a good candidate for targeted retention efforts.
(We may also want to rank customers for more costly targeted retention efforts, e.g., by
expected future lifetime account value.) The exact details of how we formally define churn will
be specific to our business and the kinds of retention efforts we may have to offer; given such a
definition, though, we can label historical customer records and build a target for our model.

Data scientists

Data scientists

Machine learning engineers any prior task

App developers, DevOps, and SRE

Business analysts

Codifying problem
and metrics

Data federation,
cleaning, and labeling

Feature
engineering

Model training
and tuning

Model validation
and simulation

Production
deployment

Continuous
monitoring

and validation

Data engineers

https://www.cloudera.com/products/cloudera-data-platform.html
https://ieeexplore.ieee.org/document/9052717

WHITE PAPER

5 An End-to-End Blueprint for Churn Prediction and Modeling

Data Federation, Cleaning, Analytics, and Labeling
Our focus next shifts to identifying, transforming, and federating potentially-relevant
information about our customers. Ideally, we will be able to draw upon structured data, such as
transactional databases, and unstructured data, such as call center transcripts. Federating this
data in a single logical location, like a data lake, is an important step for further processing. We
then need a way to ensure that the data we have meets a given standard for quality — for
example, are all of the values in their expected ranges? Are certain records missing important
values? — and impose these constraints while processing raw data from the data lake and
storing structured data in a data warehouse. Given a source of clean, structured data, we can
support exploratory analytics, report generation, and ultimately machine learning model
training. In many cases, ad hoc queries and reports are related to the problems we might want
to solve with machine learning: for example, quarterly reports will likely cover net loss or gain in
subscribers and revenue, and a database programmer or business analyst might use
interactive queries to identify attributes of customer records that are correlated with various
business outcomes.

Data in our data warehouse is cleaned, federated, structured, organized, and (can be) labeled
with various outcomes of interest for each customer — these are all properties that make it
easier to find patterns and business value in the data. But relational databases are also typically
organized with normal forms, which means that all of the relevant data about a given customer
may be spread across multiple more-or-less independent tables. In order to prepare to train a
machine learning model, we’ll need to denormalize our data, and go from long-form tables of
individual observations of a certain kind to wide-form tables whose rows include all of the
relevant data we have for each customer.

Feature Engineering
The wide-form data we have now is analogous to rows in a database table or programming-
language objects — it’s structured in a convenient format for further programmatic
manipulation, but it’s not in the most convenient format for training a machine learning model.
The process of feature engineering is the process of building a technique to transform
structured data into data that we can pass to a model training algorithm (or to a machine
learning model). It entails identifying techniques to map from structured data to points in
multidimensional space in such a way that the mapping preserves some interesting and
meaningful structure of the source data; concretely, we might choose features, or attributes of
each customer, and encode them as numbers so that we can encode customers as vectors of
numbers in such a way that similar customers map to similar vectors and (ideally) there is a
relatively straightforward way to partition the feature space between vectors for customers
that churned and those for customers that have not yet churned. Once we’ve identified which
features are important and how to encode them, we can develop a feature extraction pipeline
that we can use to prepare structured data for model training or inference.

Model Selection, Training, Tuning, and Validation
At their core, machine learning models provide compact, useful summaries of datasets. In the
case of the customer churn problem, our model will optimize a function to identify churning
customers by identifying combinations of features that imply most strongly that a customer will
churn. In order to train a model, we’ll need to identify a modeling approach, tune the
parameters (called hyperparameters) that govern its behavior, and evaluate its performance
before ultimately validating that it has generalized by testing its performance on held-out (and
thus novel) data.

Analyze structured and
unstructured data at scale

•	 CDP Data Warehouse offers a
cloud-native data warehouse fully
integrated with streaming, data
engineering, and machine learning
analytics.

•	 Cloudera Data Lake Service provides
capabilities for governing, managing,
securing and auditing data in a data lake.

Orchestrate and automate
complex data pipelines

•	 CDP Data Engineering is the only
cloud-native service purpose-built for
enterprise data engineering teams.
Building on Apache Spark, Data
Engineering is an all-inclusive data
engineering toolset that enables
orchestration automation with Apache
Airflow, advanced pipeline monitoring,
visual troubleshooting, and
comprehensive management tools to
streamline ETL processes across
enterprise analytics teams.

Accelerate the process of putting
machine learning to work

•	 CDP Machine Learning is a scalable,
open ML platform that helps streamline
the process of getting analytic workloads
into production and intelligently manage
machine learning use cases across the
business at scale.

Federating data in a single logical
location, like a data lake, is an
important step for further
processing.

Feature engineering: The process of
building a technique to transform
structured data into data that we can pass
to a model training algorithm or to a
machine learning model.

https://en.wikipedia.org/wiki/Database_normalization
https://www.cloudera.com/products/data-warehouse.html
https://www.cloudera.com/products/sdx/data-lake-service.html
https://www.cloudera.com/products/data-engineering.html
https://www.cloudera.com/products/machine-learning.html

WHITE PAPER

6 An End-to-End Blueprint for Churn Prediction and Modeling

Production Deployment, Monitoring, and Feedback
Even a promising model can only be as useful as the system that employs it to solve a business
problem. In order to deploy our model into production, we’ll need:

1.	 a way to reproduce the feature extraction pipeline and model training pipelines from our
discovery workflow in a production environment as a production training pipeline (that is, a
way to take raw, labeled data and produce a trained model), and

2.	 a way to publish our feature extraction pipeline and the trained model itself as a production
inference pipeline (that is, a service that takes a record of novel data, extracts features from
that record, and then uses the model to make a prediction about it)

In addition, we’ll need to monitor our model’s inputs and performance to account for concept
drift, which occurs when the novel data we see have diverged enough from the data we trained
our model on that its performance begins to materially suffer. (As a concrete example, a mobile
network operator might start losing customers who spend a lot of time internationally roaming
after a competitor introduces a free or reduced-cost international roaming plan – the
underlying cause and phenomenon wouldn’t have been captured in any training data collected
before the competitive landscape changed.) Other changes that could impact the
performance of our model include changes to upstream data formats or schemas, the
introduction of new customer categories, and long-term trends in the overall market.

Identifying concept drift is one of many problems that can cause us to return to an earlier stage
and revisit engineering and modeling decisions that we made. At the end of this workflow, we
may have a model with excellent predictive performance that ultimately doesn’t enable us to
satisfy the right business metrics, requiring us to reevaluate how we formalized our problem.
Concept drift may require retraining a model with additional training data. Unanticipated
problems in production may suggest using a different overall approach. Finally, the processes
of feature engineering and model training are often iterative since decisions made about how
to encode features impact the kinds of models that we can effectively train.

CONCEPT DRIFT
When novel data diverge enough
from training data that model
performance begins to materially
suffer.

Follow best practices for ML
management and governance

•	 CDP Machine Learning’s MLOps
capability enables one-click model
deployment, model cataloging, and
granular prediction monitoring to keep
models secure and accurate across
production environments.

https://www.cloudera.com/products/machine-learning.html

WHITE PAPER

7 An End-to-End Blueprint for Churn Prediction and Modeling

Machine Learning Systems

Figure 2. A mapping from machine learning workflow stages to the machine learning system components each informs.

We’ve just discussed a human process by which teams develop machine learning systems, but
we haven’t explicitly described the machine learning systems they’ll create. Each of the stages
we discussed in the discovery workflow informs some parts of a machine learning system.
There’s a high-level view of one such mapping in the figure above, color-coded by the personas
involved in each stage.

Some correspondences between human tasks and system components are obvious. For
example, the feature engineering approach a data scientist chooses will directly inform the
code that executes as part of a production feature extraction pipeline. The modeling
approaches that are most successful in prototypes and experiments will inform the modeling
approaches used in production, and so on.

Some correspondences are more interesting. Just as the discovery workflow is iterative and
lessons learned in later stages can feed back to earlier stages, explicit data feedback is an
important part of machine learning systems: new (potentially-labeled) data collected during
the operation of a system can feed back to the data federation pipeline to be used for future
training efforts, metrics about model performance and business metrics can be tracked in a
single dashboard (as well as monitored for evidence of concept drift), and experimental
approaches can be evaluated in production in parallel to established ones.

Data feedback is an important
part of machine learning. New
data collected during operation
can feed back to the data
federation pipeline for future
training.

Data scientists

Codifying problem
and metrics

Data federation,
cleaning, and labeling

Production labeling and
federation pipelines

Reporting
and analytics

Model and inference
pipeline serving

Inference pipeline
monitoring and drift

detection

Feature
engineering

Model training
and tuning

Model validation
and simulation

Production
deployment

Continuous
monitoring

and validation

Experiment management and discovery training

Feature
extraction

Hyperparameter tuning

Model
training

Validation and
simulation

Production training

Feature
extraction

Model
training

Validation and
simulation

Legend of primary personas
Business analysts

Developers and ops
ML engineers
Data scientists
Data engineers

WHITE PAPER

8 An End-to-End Blueprint for Churn Prediction and Modeling

Figure 3. A mapping from machine learning workflow stages to the machine learning system components each informs.

Overall Application Architecture
We’ll be building up a complete system for churn modeling and prediction, consisting of four
applications that work together: a data federation application that integrates structured data
from a data warehouse, an analytics application that prepares human- and machine-readable
reports from the federated data in order to generate business insight and support a data
scientist’s workflow, a feature extraction and model training application that takes flat
training data and reports and generates a trained model and an inference pipeline, and an
inference service that takes information about a customer and predicts whether or not that
customer will churn.

As we’ve mentioned, we’re going to focus on some of the parts of machine learning systems
that are often ignored in machine learning technique tutorials: accelerating data federation,
query processing, and exploratory analytics; managing the connections between different
system components developed by different teams in different languages; and making the best
use of our compute resources across the lifecycle of our system.

Technology Stack
For our data federation and analytics applications, we’ll be using Apache Spark and the RAPIDS
Accelerator for Apache Spark, which enables us to accelerate Spark data frame operations on
NVIDIA GPUs. Our feature extraction and model training application will use accelerated
libraries from RAPIDS and the Python data ecosystem, including cuDF, cuML, Dask, and
XGBoost. We’ll use the RAPIDS Forest Inference Library to accelerate inference. There are
some important differences in how these libraries work and how they achieve GPU
acceleration; we’ll briefly examine each.

CLOUDERA DATA
PLATFORM AND NVIDIA
To save time with model training,
data scientists often turn to
NVIDIA GPUs to accelerate
machine learning and deep
learning workloads. With
Cloudera Data Platform (CDP),
practitioners can leverage
best-in-class GPU computing
frameworks from NVIDIA natively
on any cloud with CDP Public
Cloud and/or on-premises with
CDP Private Cloud.

Inference service

columnar data
in stable storage

summary reports
and field statistics

Legend of primary personas
Business analysts

Developers and ops
Data scientists
Data engineers

Data federation app

Input: multi-table “raw” data
Output: flat denormalized data

Data analytics app

Input: flat denormalized data
Output: summaries and reports

Feature extraction
and model training app

Input: flat training data
and summary reports
Output: trained model and
fitted inference pipeline

WHITE PAPER

9 An End-to-End Blueprint for Churn Prediction and Modeling

Figure 4. A mapping from personas and workflow stages to RAPIDS libraries, including cuDF, cuML, and cuGraph, and ecosystem projects that interoperate with these.

RAPIDS
The RAPIDS libraries provide GPU-accelerated implementations of familiar interfaces from the
Python data ecosystem. RAPIDS users are thus able to benefit from GPU acceleration without
relying on implementing custom compute kernels or manually managing parallelism or
transfers between host and device memory. cuDF is a GPU-accelerated data frame library,
which allows users to manipulate collections of typed, structured data with an interface similar
to the popular pandas library. cuML is a GPU-accelerated machine learning library that includes
building blocks for feature extraction and model training pipelines that implement the
scikit-learn estimator interface. cuML also includes a SHAP implementation for model
explainability and FIL, an accelerated library for production inference with tree ensemble
models. In addition, these libraries can share on-GPU data with other machine learning and
deep learning libraries through the CUDA array interface. RAPIDS includes other libraries as
well; the following figure shows how these map to the personas involved in the data science
discovery lifecycle.

While cuDF and cuML provide familiar interfaces for data scientists, they are not drop-in
replacements for pandas and scikit-learn respectively. Not every operation or algorithm in
pandas and scikit-learn is amenable to GPU acceleration (or parallel execution in general); the
RAPIDS libraries focus on implementing operations that can be accelerated on GPUs. A true
drop-in replacement would need to transparently fall back to serial implementations for
operations that won’t parallelize; since it’s possible, for example, to include serial scikit-learn
estimators and transformers in a machine learning pipeline that uses cuML for performance-
sensitive stages, it’s possible for users to explicitly use serial implementations when
necessary. In addition, most of the algorithms in RAPIDS are designed for a single node
and a single GPU; in order to scale out or use more memory than is available in a single GPU,
users will need to use the scale-out framework Dask in conjunction with cuDF and cuML, as in
the following figure.

Data scientists

Data scientists

App developers, DevOps, and SRE

Business analysts

Codifying problem
and metrics

Data federation,
cleaning, and labeling

Feature
engineering

Model training
and tuning

Model validation
and simulation

Production
deployment

Continuous
monitoring

and validation

Data engineers

Apache Arrow columnar storage in GPU memory

cuDF cuML cuGraph TensorFlow, PyTorch, MXNet cuXfilter, pyViz, plotly

https://pandas.pydata.org/
https://scikit-learn.org/
https://medium.com/rapids-ai/gpu-accelerated-shap-values-with-xgboost-1-3-and-rapids-587fad6822
https://medium.com/rapids-ai/rapids-forest-inference-library-prediction-at-100-million-rows-per-second-19558890bc35

WHITE PAPER

10 An End-to-End Blueprint for Churn Prediction and Modeling

The RAPIDS Accelerator for Apache Spark
The RAPIDS Accelerator for Apache Spark takes a different approach to accelerating data
science workloads on GPUs. Fundamentally, its approach is to provide transparent acceleration
of Spark data frame jobs via a Spark plugin that integrates with Spark’s query planner. The
plugin rewrites data frame query plans in order to evaluate accelerable operations with
implementations that use libcudf (the C++ library providing accelerated data frame
functionality to the Python cuDF library) to execute on the GPU. Operations that cannot be
accelerated will run on the CPU with Spark’s built-in implementations; if there is a branch of a
query plan that includes both accelerable and non-accelerable operations, the RAPIDS
Accelerator plugin will automatically insert transfers between host and device memory so that
both kinds of operations can work together transparently to execute a given query plan. The
RAPIDS Accelerator for Apache Spark also provides an accelerated shuffle implementation
using UCX (for data transfer within clusters) and integration with GPU-accelerated XGBoost.

Figure 5. The architecture of GPU-acclerated Spark. Gray blocks in the bottom layer are the underlying resource managers Spark works with; the middle block is Spark’s core task scheduler, resource
manager, and low-level distributed collection API; the blocks on top are Spark’s high-level APIs. Purple boxes indicate where extensions can provide GPU acceleration to Spark applications.

Transparent acceleration has both a benefit and a cost for users. The benefit of transparent
acceleration is that users can expect that a Spark application that runs successfully on the CPU
will also run successfully with the RAPIDS Accelerator for Apache Spark enabled. The cost of
transparent acceleration is that the performance improvement any given application can
expect may be difficult to predict and will be a function of several factors: what percentage of
its runtime it spends in accelerable data frame operations, how much work can be performed
on the GPU between CPU-only operations, and how much each accelerable operation can
improve when running on the GPU. Paradoxically, in order to take full advantage of transparent
acceleration, data engineers and application developers may need to consider which parts of
their application can be accelerated in order to make small changes for maximum
performance. The following figure shows part of a query plan in which some operations are
accelerated but one aggregate operation runs on the CPU.

PUSH ML PERFORMANCE
BOUNDARIES
The RAPIDS Accelerator for
Apache Spark is now integrated
with CDP Private Cloud Base,
enabling enterprises to
accelerate data pipelines and
push the performance
boundaries of data and machine
learning (ML) workflows. Drive
faster AI adoption and deliver
better business outcomes
without changing any code.

Spark core (distributed collections, memory manager, task scheduler)

Standalone KubernetesYARN

Graph processingMachine learningSQL and data frames Streaming

UCX

XGBoostlibcudf

WHITE PAPER

11 An End-to-End Blueprint for Churn Prediction and Modeling

Finally, transparent acceleration depends on applications using Spark’s data frame and query
abstractions. Because data frame operations are specified in an expressive but high-level API,
it is possible to reorganize and rewrite query plans before they are executed, including
replacing operations with higher-performance implementations (Spark itself takes advantage
of this by generating native code to execute portions of query plans). Indeed, all data frame
operations and SQL queries are planned and transformed by Spark before execution, and Spark
itself provides a plugin layer so that external code (like the RAPIDS Accelerator) can alter the
behavior of the query planner. Spark’s lower-level resilient distributed dataset (RDD) API allows
users to execute arbitrary code on partitioned distributed collections, but this additional
flexibility of expression for application developers comes at the cost of flexibility of execution
for Spark itself: since it is not, in general, feasible to safely transform arbitrary host-language
code, Spark must treat the functions passed into its RDD API as opaque.

The Cloudera Data Platform
CDP is the industry’s first enterprise data cloud. The platform manages and secures data
workloads across all major public clouds and on premise in the private cloud. CDP also enables
a seamless connection between the public and private cloud for a hybrid experience.

CDP ships with rich capabilities to power your entire data lifecycle, from the edge to AI,
including distributed and governed storage, data engineering pipelines, and exploratory or
production machine learning.

RAPIDS and the RAPIDS Accelerator for Apache Spark are now available for your enterprise
data lake as part of the Cloudera Data Platform. In the full eBook, we’ll show you how this ML
application for predicting customer churn can be implemented on CDP Private Cloud Base and
leverage these best-in-class GPU computing frameworks.

Figure 6. A subset of an accelerated Spark query plan, showing GPU-accelerated portions, host-device and device-host transfers, and operations falling back to execute on the CPU.

Executed on the GPU

executed on the GPU

GpuFileGpuScan parquet
[customerID#39, kind#40, value#41]

GpuCoalesceBatches
TargetSize(2147483647)

GpuCoalesceBatches RequireSingleBatch GpuCoalesceBatches RequireSingleBatch GpuShuffledHashJoinGpuProject

GpuRowToColumnar
TargetSize(2147483647)

GpuColumnarToRow

GpuFilter (
 (gpuisnotnull(kind#40) AND
 (kind#40 = Charge)) AND
 gpuisnotnull(customerID#39)
)

GpuColumnarExchange
gpuhashpartitioning(
 customerID#39,16
)

GpuShuffledHashJoin
[customerID#54],
[customerID#54],
Inner, BuildRight, false

HashAggregate (
 keys[customerID#39, kind#40],
 functions=partial_count(value#8),
 partial_sum(cast(value#8 as double))]
)

HashAggregate (
 keys[customerID#39, kind#40],
 functions=partial_count(value#8),
 sum(cast(value#8 as double))]
)

Exchange
hashpartioning(
 customerID#39,
 kind#40,
16
)

GpuProject (
 customerID#39,
 kind#40
 cast(value#41 as float)
 AS value#8
] GPU-> CPU

transfer

GPU-> CPU
transfer

executed on the GPU

executed on the CPU

https://www.cloudera.com/products/cloudera-data-platform.html

WHITE PAPER

Cloudera, Inc.  5470 Great America Pkwy,  Santa Clara, CA 95054  USA  cloudera.com

© 2021 Cloudera, Inc. All rights reserved. Cloudera and the Cloudera logo are trademarks or registered trademarks
of Cloudera Inc. in the USA and other countries. All other trademarks are the property of their respective companies.
Information is subject to change without notice.  0000-001  January 6, 2021

Make an Impact on Your Business with ML That Scales
We’ve discussed our tech stack: RAPIDS, the RAPIDS Accelerator for Apache Spark, and NVIDIA
GPUs. With the Cloudera Data Platform (CDP), you can take advantage of these accelerated
libraries, but on the industry’s first enterprise data cloud.

For our application, using commodity servers with NVIDIA GPUs made data federation nearly
2x faster, improved analytics performance by nearly 7x, and made machine learning model
training faster on a cluster or possible on a single node (yet still dramatically faster) – resulting
in over a 3x improvement in performance-per-dollar relative to CPU-only servers on our
end-to-end workload. Speed and convenience aren’t enough for enterprises, though – your
business needs trusted partners and robust support.

CDP delivers an enterprise data cloud with open, hybrid data architecture, seamlessly
connecting your data across your fragmented IT landscape. It also features an always-on
Shared Data Experience (SDX) layer that enables holistic security, governance, and
compliance across the full data lifecycle.

Cloudera Machine Learning (CML) for CDP enables enterprise data science teams to
collaborate across the ML lifecycle with immediate access to enterprise data pipelines,
scalable compute resources, and access to preferred tools.

With SDX integrated into CML, you can deploy models to production with access, governance,
and security rules inherited directly from CDP.

CML also features Applied Machine Learning Prototypes (AMPs), a catalog of end-to-end
reference ML projects that you can deploy at the click of a button. AMPs help your company
realize ROI from ML faster and at a greater scale.

Start your free test drive at Cloudera.com.

About Cloudera
At Cloudera, we believe that data can
make what is impossible today, possible
tomorrow. We empower people to
transform complex data into clear and
actionable insights. Cloudera delivers
an enterprise data cloud for any data,
anywhere, from the Edge to AI. Powered
by the relentless innovation of the open
source community, Cloudera advances
digital transformation for the world’s
largest enterprises.

Learn more at  cloudera.com
US: +1 888 789 1488
Outside the US: +1 650 362 0488

Connect with Cloudera
About Cloudera:
cloudera.com/more/about.html

Read our VISION blog:
vision.cloudera.com

Follow us on Twitter:
twitter.com/cloudera

Visit us on Facebook:
facebook.com/cloudera

See us on YouTube:
youtube.com/user/clouderahadoop

Join the Cloudera Community:
community.cloudera.com

Read about our customers’ successes:
cloudera.com/more/customers.html

http://cloudera.com
https://www.cloudera.com/products/sdx.html
https://www.cloudera.com/products/machine-learning.html
https://cloudera.github.io/Applied-ML-Prototypes/#/
https://www.cloudera.com/
http://cloudera.com
http://cloudera.com/more/about.html
vision.cloudera.com
http://twitter.com/cloudera
http://facebook.com/cloudera
http://youtube.com/user/clouderahadoop
http://community.cloudera.com
http://cloudera.com/more/customers.html

